Câu hỏi:
Trong các hàm số sau, hàm số nào liên tục trên $\mathbb{R}$.
Trả lời:
Đáp án đúng: D
Để hàm số liên tục trên $\mathbb{R}$, mẫu số của phân thức phải khác 0 với mọi $x$ và biểu thức dưới căn phải không âm với mọi $x$.
- $f(x) = \tan x + 5$ không liên tục trên $\mathbb{R}$ vì $\tan x$ không xác định tại $x = \frac{\pi}{2} + k\pi$ với $k \in \mathbb{Z}$.
- $f(x) = \frac{x^2 + 3}{5 - x}$ không liên tục trên $\mathbb{R}$ vì không xác định tại $x = 5$.
- $f(x) = \sqrt{x - 6}$ không liên tục trên $\mathbb{R}$ vì chỉ xác định khi $x \ge 6$.
- $f(x) = \frac{x + 5}{x^2 + 4}$ liên tục trên $\mathbb{R}$ vì $x^2 + 4 > 0$ với mọi $x \in \mathbb{R}$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
