Câu hỏi:
Một con lắc đơn có chiều dài sợi dây là \[\ell \] dao động điều hòa tại một nơi có gia tốc rơi tự do g với biên độ góc \[{\alpha _0}\]. Khi vật qua vị trí có li độ góc \[\alpha \], nó có vận tốc v thì:
Trả lời:
Đáp án đúng: B
Áp dụng định luật bảo toàn cơ năng cho con lắc đơn:
Cơ năng tại vị trí biên: $E = mgl(1 - cos{\alpha _0})$
Cơ năng tại vị trí có li độ góc $\alpha$: $E = mgl(1 - cos{\alpha }) + \frac{1}{2}m{v^2}$
Suy ra: $mgl(1 - cos{\alpha _0}) = mgl(1 - cos{\alpha }) + \frac{1}{2}m{v^2}$
$\Leftrightarrow gl(1 - cos{\alpha _0}) = gl(1 - cos{\alpha }) + \frac{1}{2}{v^2}$
$\Leftrightarrow 2gl(1 - cos{\alpha _0}) = 2gl(1 - cos{\alpha }) + {v^2}$
$\Leftrightarrow 2gl - 2glcos{\alpha _0} = 2gl - 2glcos{\alpha } + {v^2}$
$\Leftrightarrow -2glcos{\alpha _0} = -2glcos{\alpha } + {v^2}$
$\Leftrightarrow 2glcos{\alpha } - 2glcos{\alpha _0} = {v^2}$
Với góc nhỏ, ta có $cos\alpha \approx 1 - \frac{{{\alpha ^2}}}{2}$
$\Rightarrow 2gl(1 - \frac{{{\alpha ^2}}}{2}) - 2gl(1 - \frac{{\alpha _0^2}}{2}) = {v^2}$
$\Leftrightarrow 2gl - gl{\alpha ^2} - 2gl + gl\alpha _0^2 = {v^2}$
$\Leftrightarrow gl\alpha _0^2 - gl{\alpha ^2} = {v^2}$
$\Leftrightarrow gl(\alpha _0^2 - {\alpha ^2}) = {v^2}$
$\Leftrightarrow \alpha _0^2 - {\alpha ^2} = \frac{{{v^2}}}{{gl}}$
$\Leftrightarrow \alpha _0^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}$
Cơ năng tại vị trí biên: $E = mgl(1 - cos{\alpha _0})$
Cơ năng tại vị trí có li độ góc $\alpha$: $E = mgl(1 - cos{\alpha }) + \frac{1}{2}m{v^2}$
Suy ra: $mgl(1 - cos{\alpha _0}) = mgl(1 - cos{\alpha }) + \frac{1}{2}m{v^2}$
$\Leftrightarrow gl(1 - cos{\alpha _0}) = gl(1 - cos{\alpha }) + \frac{1}{2}{v^2}$
$\Leftrightarrow 2gl(1 - cos{\alpha _0}) = 2gl(1 - cos{\alpha }) + {v^2}$
$\Leftrightarrow 2gl - 2glcos{\alpha _0} = 2gl - 2glcos{\alpha } + {v^2}$
$\Leftrightarrow -2glcos{\alpha _0} = -2glcos{\alpha } + {v^2}$
$\Leftrightarrow 2glcos{\alpha } - 2glcos{\alpha _0} = {v^2}$
Với góc nhỏ, ta có $cos\alpha \approx 1 - \frac{{{\alpha ^2}}}{2}$
$\Rightarrow 2gl(1 - \frac{{{\alpha ^2}}}{2}) - 2gl(1 - \frac{{\alpha _0^2}}{2}) = {v^2}$
$\Leftrightarrow 2gl - gl{\alpha ^2} - 2gl + gl\alpha _0^2 = {v^2}$
$\Leftrightarrow gl\alpha _0^2 - gl{\alpha ^2} = {v^2}$
$\Leftrightarrow gl(\alpha _0^2 - {\alpha ^2}) = {v^2}$
$\Leftrightarrow \alpha _0^2 - {\alpha ^2} = \frac{{{v^2}}}{{gl}}$
$\Leftrightarrow \alpha _0^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}$
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
