Câu hỏi:
Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Khẳng định nào sau đây sai?
Trả lời:
Đáp án đúng: D
Vì $ABCD$ là hình bình hành nên $AC$ và $BD$ cắt nhau tại trung điểm của mỗi đường.
Gọi $O$ là giao điểm của $AC$ và $BD$.
Khi đó, $O$ thuộc $(SBD)$, suy ra $AC$ cắt $(SBD)$ tại $O$.
Vậy $AC$ không song song với $(SBD)$.
Gọi $O$ là giao điểm của $AC$ và $BD$.
Khi đó, $O$ thuộc $(SBD)$, suy ra $AC$ cắt $(SBD)$ tại $O$.
Vậy $AC$ không song song với $(SBD)$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
17/09/2025
0 lượt thi
0 / 38
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
