Câu hỏi:
Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây :
a) Hàm số đạt cực đại tại.
b) Có 3 giá trị nguyên của để phương trình
có 3 nghiệm phân biệt .
c) Đường cong trên là đồ thị hàm số .
d) Gọi và
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
thì
.
Trả lời:
Đáp án đúng:
Dựa vào đồ thị hàm số, ta thấy:
- Hàm số đạt cực đại tại $x = -1$ và đạt cực tiểu tại $x = 1$.
- Giá trị cực đại là $y_{CD} = f(-1) = 4$. Giá trị cực tiểu là $y_{CT} = f(1) = 0$.
- Phương án A đúng.
- Phương án B sai vì để $f(x) = m$ có 3 nghiệm phân biệt thì $0 < m < 4$, suy ra $m \in \{1, 2, 3\}$, tức là có 3 giá trị nguyên của $m$. Tuy nhiên câu hỏi này là một mệnh đề, và mệnh đề này sai vì hàm số đạt cực đại tại $x = -1$, không phải chỉ có 3 giá trị nguyên của m.
- Phương án C sai vì $a < 0$ (hệ số của $x^3$ âm) và đồ thị đi qua điểm $(-2,0)$ nên $f(-2) = 0$, thay $x = -2$ vào $y = -x^3 + 3x - 2$ ta được $y = -(-8) + 3(-2) - 2 = 8 - 6 - 2 = 0$, và đồ thị đi qua điểm $(0, 2)$ nên $f(0) = 2$, thay $x = 0$ vào $y = -x^3 + 3x - 2$ ta được $y = -2$, do đó phương án này sai.
- Phương án D sai vì $M = 4$ và $m = 0$, suy ra $M \neq 3m$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
