Câu hỏi:
Cho cấp số cộng $\left( {{u_n}} \right)$ biết ${u_5} = 18$ và $4{S_n} = {S_{2n}}$. Số hạng đầu ${u_1}$ và công sai $d$ là
Trả lời:
Đáp án đúng: D
Ta có $u_5 = u_1 + 4d = 18$ (1)
$4S_n = S_{2n} \Leftrightarrow 4\dfrac{n(2u_1 + (n-1)d)}{2} = \dfrac{2n(2u_1 + (2n-1)d)}{2}$
$\Leftrightarrow 4(2u_1 + (n-1)d) = 2(2u_1 + (2n-1)d)$
$\Leftrightarrow 8u_1 + 4(n-1)d = 4u_1 + 2(2n-1)d$
$\Leftrightarrow 4u_1 = (4n-2)d - (4n-4)d$
$\Leftrightarrow 4u_1 = 2d \Leftrightarrow 2u_1 = d$ (2)
Thay (2) vào (1) ta được:
$u_1 + 4(2u_1) = 18 \Leftrightarrow 9u_1 = 18 \Leftrightarrow u_1 = 2$
$d = 2u_1 = 2.2 = 4$. Vậy $u_1 = 2, d = 4$.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Câu hỏi liên quan

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Giáo Dục Kinh Tế Và Pháp Luật Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Lịch Sử Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Công Nghệ Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Hóa Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT

Bộ 50 Đề Thi Thử Tốt Nghiệp THPT Môn Sinh Học Năm 2026 – Theo Cấu Trúc Đề Minh Họa Bộ GD&ĐT
