JavaScript is required

Lực tương tác giữa 2 điện tích điểm sẽ thay đổi thế nào nếu ta cho độ lớn của mỗi điện tích điểm đó tăng gấp đôi, đồng thời khoảng cách giữa chúng cũng tăng gấp đôi?

A.

Tăng gấp đôi

B.

Giảm một nửa

C.

Không đổi

D.

Tăng gấp 4 lần

Trả lời:

Đáp án đúng: C


Theo định luật Coulomb, lực tương tác giữa hai điện tích điểm được tính bằng công thức:

\(F = k \frac{|q_1 q_2|}{r^2}\)

Trong đó:

  • \(F\) là lực tương tác giữa hai điện tích.
  • \(k\) là hằng số Coulomb.
  • \(q_1\) và \(q_2\) là độ lớn của hai điện tích.
  • \(r\) là khoảng cách giữa hai điện tích.

Theo đề bài, độ lớn của mỗi điện tích tăng gấp đôi, tức là \(q_1' = 2q_1\) và \(q_2' = 2q_2\). Đồng thời, khoảng cách giữa chúng cũng tăng gấp đôi, tức là \(r' = 2r\). Khi đó, lực tương tác mới \(F'\) sẽ là:

\(F' = k \frac{|q_1' q_2'|}{r'^2} = k \frac{|(2q_1)(2q_2)|}{(2r)^2} = k \frac{4|q_1 q_2|}{4r^2} = k \frac{|q_1 q_2|}{r^2} = F\)

Như vậy, lực tương tác không đổi.

Câu hỏi liên quan