JavaScript is required

Câu hỏi:

1. Cho hình lục giác đều \(ABCDEG\) (các đỉnh của lục giác theo thứ tự cùng chiều kim đồng hồ) có tâm \(O.\)

 1. Cho hình lục giác đều \(ABCDEG\) (các đỉnh của lục giác theo thứ tự cùng chiều kim đồng hồ) có tâm \(O.\) Phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(E\) có góc quay là bao nhiêu độ? 2. Cho đường tròn \(\left( {O;R} \right).\) Từ điểm \(M\) nằm ngoài đường tròn \[\left( {O;R} \right),\] kẻ các tiếp tuyến \[MA\] và \[MB\] với đường tròn đó \[(A,{\rm{ }}B\] là các tiếp điểm) sao cho \(MA = R\sqrt 3 .\) a) Chứng minh rằng tứ giác \(AMBO\) nội tiếp đường tròn. b) Tính bán kính đường tròn nội tiếp tam giác \(MAB.\) c) Vẽ đường thẳng \(d\) đi qua \[M\] cắt đường tròn \(\left( O \right)\) tại hai điểm \[P,{\rm{ }}Q\] sao cho \(P\) nằm giữa \(M\) và \(Q.\) Xác định vị trí của đường thẳng \[d\] sao cho \[MP + MQ\] đạt giá trị nhỏ nhất. (ảnh 1)

Phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(E\) có góc quay là bao nhiêu độ?

2. Cho đường tròn \(\left( {O;R} \right).\) Từ điểm \(M\) nằm ngoài đường tròn \[\left( {O;R} \right),\] kẻ các tiếp tuyến \[MA\] và \[MB\] với đường tròn đó \[(A,{\rm{ }}B\] là các tiếp điểm) sao cho \(MA = R\sqrt 3 .\)

a) Chứng minh rằng tứ giác \(AMBO\) nội tiếp đường tròn.

b) Tính bán kính đường tròn nội tiếp tam giác \(MAB.\)

c) Vẽ đường thẳng \(d\) đi qua \[M\] cắt đường tròn \(\left( O \right)\) tại hai điểm \[P,{\rm{ }}Q\] sao cho \(P\) nằm giữa \(M\) và \(Q.\) Xác định vị trí của đường thẳng \[d\] sao cho \[MP + MQ\] đạt giá trị nhỏ nhất.

Trả lời:

Đáp án đúng:


Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan