JavaScript is required

Giả sử có một đồng xu cân bằng (fair coin) và một đồng xu thiên lệch (biased coin) mà mặt ngửa (heads) xuất hiện với xác suất \(\frac{3}{4}\)​. Một người chơi ngẫu nhiên chọn một trong hai đồng xu và tung nó ba lần. Gọi A là biến cố: “Người chơi chọn đồng xu cân bằng”, B là biến cố: “Ba lần tung đồng xu đều xuất hiện mặt ngửa”.

a) \[P\left( A \right) = \frac{1}{2}\]​.

b) \[P\left( {B\mid A} \right) = \frac{3}{8}\]​.

c) Xác suất để người đó chọn được đồng xu cân bằng biết rằng kết quả ba lần tung đều xuất hiện mặt ngửa là \[0,25\] (kết quả làm tròn đến hàng phần trăm).

d) Biết rằng đồng xu được chọn tung ba lần đều xuất hiện mặt ngửa, xác suất người chơi đó tung lần thứ tư tiếp tục xuất hiện mặt ngửa là \[0,69\] (kết quả làm tròn đến hàng phần trăm).

Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan