JavaScript is required

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\),\(AB = a,\,\,\widehat {BAD} = 60^\circ \), \(SO \bot \left( {ABCD} \right)\) và mặt phẳng \(\left( {SCD} \right)\) tạo với mặt đáy một góc \(60^\circ \). Gọi \(J,\,I\) lần lượt là trung điểm cạnh \(CD,\,DJ\).

a) Diện tích của hình thoi \(ABCD\)\({S_{ABCD}} = \frac{{{a^2}\sqrt 3 }}{2}\).

b) Góc giữa mặt phẳng \(\left( {SCD} \right)\) và mặt đáy là \(\widehat {SJO}\).

c) Chiều cao của khối chóp là \(\frac{{3a}}{4}\).

d) Thể tích của khối chóp \(S.ABCD\) được viết dưới dạng \(\frac{{{a^3}\sqrt m }}{n}\), với \(m\) là số nguyên tố. Khi đó, \(2024m - n = 6065\).

Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan