JavaScript is required

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thoả mãn \(\int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x = 2\).

a) \(\int\limits_1^3 {3f\left( x \right)} \,{\rm{d}}x = 6\).

b) Nếu \(\int\limits_2^3 {f\left( x \right)} \,{\rm{d}}x = - 1\) thì \(\int\limits_1^2 {f\left( x \right)} \,{\rm{d}}x = 1\).

c) Nếu \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {1;3} \right]\) thoả mãn \(F\left( 1 \right) = 3\) thì \(F\left( 3 \right) = 1\).

d) \(\int\limits_1^3 {\frac{{xf\left( x \right) + {x^2} - 1}}{x}} \,{\rm{d}}x = a + b\ln 3\;\,\left( {a \in \mathbb{R},b \in \mathbb{R}} \right)\). Ta có \(a + b = 5\).

Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Câu hỏi liên quan