Chọn công thức đúng,
NPV = B0 – C0 + \(\frac{{{B_1} - {C_1}}}{{1 + r}}\) - \(\frac{{{B_2} - {C_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……+\(\frac{{{B_{n - 1}} - {C_{n - 1}}}}{{{{\left( {1 + r} \right)}^{n - 1}}}}\)
NPV = B0 + C0 + \(\frac{{{B_1} - {C_1}}}{{1 + r}}\) - \(\frac{{{B_2} - {C_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……+\(\frac{{{B_{n - 1}} - {C_{n - 1}}}}{{{{\left( {1 + r} \right)}^{n - 1}}}}\)
NPV = B0 – C0 + \(\frac{{{B_1} - {C_1}}}{{1 + r}}\) - \(\frac{{{B_2} - {C_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……+\(\frac{{{B_{n - 1}} - {C_{n - 1}}}}{{{{\left( {1 + r} \right)}^{n - 1}}}}\)
NPV = B0 + C0 + \(\frac{{{B_1} - {C_1}}}{{1 + r}}\) - \(\frac{{{B_2} - {C_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……+\(\frac{{{B_{n - 1}} - {C_{n - 1}}}}{{{{\left( {1 + r} \right)}^{n - 1}}}}\)
Đáp án đúng: A