Chọn công thức đúng.
PDV = \(\mathop \sum \limits_{i = 0}^n \frac{{{R_i}}}{{{{\left( {1 + r} \right)}^i}}}\) = R0 + \(\frac{{{R_1}}}{{\left( {1 + r} \right)}}\) + \(\frac{{{R_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……..+ \(\frac{{{R_n}}}{{{{\left( {1 + n} \right)}^n}}}\)
PDV = \(\mathop \sum \limits_{i = 0}^n \frac{{{R_i}}}{{{{\left( {1 + r} \right)}^i}}}\) = R0 - \(\frac{{{R_1}}}{{\left( {1 + r} \right)}}\) + \(\frac{{{R_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……..+ \(\frac{{{R_n}}}{{{{\left( {1 + n} \right)}^n}}}\)
PDV = \(\mathop \sum \limits_{i = 0}^n \frac{{{R_i}}}{{{{\left( {1 + r} \right)}^i}}}\) = \(\frac{{{R_0}}}{{\left( {1 + r} \right)}}\) + \(\frac{{{R_2}}}{{{{\left( {1 + r} \right)}^2}}}\) +……..+ \(\frac{{{R_n}}}{{{{\left( {1 + n} \right)}^n}}}\)
PDV = \(\mathop \sum \limits_{i = 0}^n \frac{{{R_i}}}{{{{\left( {1 + r} \right)}^i}}}\) = R0 + \(\frac{{{R_1}}}{{\left( {1 - r} \right)}}\) + \(\frac{{{R_2}}}{{{{\left( {1 - r} \right)}^2}}}\) +……..+ \(\frac{{{R_n}}}{{{{\left( {1 - n} \right)}^n}}}\)
Đáp án đúng: A