ADMICRO
Đội thanh niên xung kích có của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong ba lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo saiTH 1: 4 học sinh được chọn thuộc một lớp:
A: có \(C_5^4 = 5\) cách chọn
B: có \(C_4^4 = 1\) cách chọn
Trường hợp này có: 6 cách chọn.
TH 2: 4 học sinh được chọn thuộc hai lớp:
A và B: có \(C_9^4 - \left( {C_5^4 + C_4^4} \right) = 120\)
B và C: có \(C_9^4 - C_4^4 = 125\)
C và A: có \(C_9^4 - C_5^4 = 121\)
Trường hợp này có 366 cách chọn.
Vậy có 366+6 = 372 cách chọn thỏa yêu cầu bài toán.
ZUNIA9
AANETWORK