Số đường tiệm cận của đồ thị hàm số \(y=\frac{x}{{{x}^{2}}-1}\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTập xác định \(D=\mathbb{R}\backslash \left\{ \pm 1 \right\}.\)
Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{x}{{{x}^{2}}-1}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\frac{1}{x}}{1-\frac{1}{{{x}^{2}}}}=0\Rightarrow y=0\) là đường tiệm cận ngang của đồ thị hàm số.
\(\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}-1}=+\infty \Rightarrow x=1\) là đường tiệm cận đứng của đồ thị hàm số.
\(\underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}-1}=+\infty \Rightarrow x=-1\) là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có ba đường tiệm cận.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Phan Đình Phùng lần 3