Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a,\) cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng của C qua D, N là trung điểm của SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai
Gọi \(\left\{ \begin{array}{l} BM \cap AD = \left\{ P \right\}\\ MN \cap SD = \left\{ Q \right\} \end{array} \right.\)
Khi đó ta có: P là trung điểm của AD và Q là trọng tâm \(\Delta SMC.\)
Gọi V là thể tích của khối chóp S.ABCD.
\({{V}_{1}}\) là thể tích khối chóp PDQ.BCN và \({{V}_{2}}\) là thể tích khối chóp còn lại.
Khi đó: \(V={{V}_{1}}+{{V}_{2}}\)
Ta có: \(\frac{{{V}_{M.PDQ}}}{{{V}_{M.BCN}}}=\frac{MP}{MB}.\frac{MD}{MC}.\frac{MQ}{MN}=\frac{1}{2}.\frac{1}{2}.\frac{2}{3}=\frac{1}{6}\)
Lại có: \({{V}_{M.BCN}}={{V}_{M.PDQ}}+{{V}_{1}}\Rightarrow {{V}_{1}}=\frac{5}{6}{{V}_{M.BCN}}\)
Mà: \(\left\{ \begin{array}{l} {S_{AMBC}} = {S_{ABDC}}\\ d\left( {N;\left( {ABCD} \right)} \right) = \frac{1}{2}d\left( {D;\left( {ABCD} \right)} \right) \end{array} \right. \Rightarrow {V_{M.BCN}} = {V_{N.MBC}} = \frac{1}{2}{V_{S.ABCD}} = \frac{V}{2}\)
\(\Rightarrow {{V}_{1}}=\frac{5}{12}V\Rightarrow {{V}_{2}}=V-{{V}_{1}}=\frac{7}{12}V\Rightarrow \frac{{{V}_{2}}}{{{V}_{1}}}=\frac{7}{5}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thanh Đa lần 3