Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaaG4maiaadIhacaGGUaGaamyzamaaCaaaleqabaGa % aGOmaiaadIhaaaGccaqGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0 % Gaey4kIipaaaa!42D0! I = \int\limits_0^1 {3x.{e^{2x}}{\rm{d}}x} \)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadwhacqGH9aqpcaaIZaGaamiEaaqaaiaabsgacaWG2bGaeyyp % a0JaamyzamaaCaaaleqabaGaaGOmaiaadIhaaaGccaqGKbGaamiEaa % aacaGL7baacqGHshI3daGabaabaeqabaGaaeizaiaadwhacqGH9aqp % caaIZaGaaeizaiaadIhaaeaacaWG2bGaeyypa0ZaaSaaaeaacaaIXa % aabaGaaGOmaaaacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaaGc % caGL7baaaaa!51DD! \left\{ \begin{array}{l} u = 3x\\ {\rm{d}}v = {e^{2x}}{\rm{d}}x \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {\rm{d}}u = 3{\rm{d}}x\\ v = \frac{1}{2}{e^{2x}} \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maaeiaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWG4bGaaiOl % aiaadwgadaahaaWcbeqaaiaaikdacaWG4baaaaGccaGLiWoadaqhaa % WcbaGaaGimaaqaaiaaigdaaaGccqGHsisldaWcaaqaaiaaiodaaeaa % caaIYaaaamaapehabaGaamyzamaaCaaaleqabaGaaGOmaiaadIhaaa % GccaqGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiab % g2da9maalaaabaGaaG4maaqaaiaaikdaaaGaamyzamaaCaaaleqaba % GaaGOmaaaakiabgkHiTmaaeiaabaWaaSaaaeaacaaIZaaabaGaaGin % aaaacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaOGaayjcSdWaa0 % baaSqaaiaaicdaaeaacaaIXaaaaOGaeyypa0ZaaSaaaeaacaaIZaaa % baGaaGOmaaaacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0YaaS % aaaeaacaaIZaaabaGaaGinaaaacaWGLbWaaWbaaSqabeaacaaIYaaa % aOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaaaacqGH9aqpdaWcaa % qaaiaaiodacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4m % aaqaaiaaisdaaaaaaa!6A73! I = \left. {\frac{3}{2}x.{e^{2x}}} \right|_0^1 - \frac{3}{2}\int\limits_0^1 {{e^{2x}}{\rm{d}}x} = \frac{3}{2}{e^2} - \left. {\frac{3}{4}{e^{2x}}} \right|_0^1 = \frac{3}{2}{e^2} - \frac{3}{4}{e^2} + \frac{3}{4} = \frac{{3{e^2} + 3}}{4}\)