Với giá trị nào của \(n\) thì đẳng thức sau luôn đúng?\(\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\cos 12x} } } = \cos \frac{x}{{2n}}\,\,,\,\,0 < x < \frac{\pi }{{12}}\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(0 < x < \frac{\pi }{{12}} \Rightarrow 0 < \frac{{3x}}{2} < 3x < 6x < \frac{\pi }{2} \Rightarrow 0 < \cos 6x < \cos 3x < \cos \frac{{3x}}{2} < 1\) (do hàm số \(y = \cos x\) là hàm số nghịch biến).
\(\begin{array}{l}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\cos 12x} } } = \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\left( {2{{\cos }^2}6x - 1} \right)} } } \\ = \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + {{\cos }^2}6x - \frac{1}{2}} } } = \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {{{\cos }^2}6x} } } \\ = \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\cos 6x} } \;\;\;\left( {do\;\;\cos 6x > 0} \right)\\ = \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\left( {2{{\cos }^2}3x - 1} \right)} } = \sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {{{\cos }^2}3x} } \\ = \sqrt {\frac{1}{2} + \frac{1}{2}\cos 3x} \;\;\;\left( {do\;\;\cos 3x > 0} \right)\\ = \sqrt {\frac{1}{2} + \frac{1}{2}\left( {2{{\cos }^2}\frac{{3x}}{2} - 1} \right)} = \sqrt {{{\cos }^2}\frac{{3x}}{2}} = \cos \frac{{3x}}{2}\;\;\left( {do\;\;\cos \frac{{3x}}{2} > 0} \right)\\ \Rightarrow \cos \frac{{3x}}{2} = \cos \frac{x}{{2n}}\;\;\;\left( 1 \right)\end{array}\)
Để (1) luôn đúng \( \Rightarrow \frac{{3x}}{2} = \frac{x}{{2n}} \Leftrightarrow n = \frac{1}{3}\)
Chọn C.